
Performance and Cost-Aware Task
Scheduling via Deep Reinforcement
Learning in Cloud Environment

Zihui Zhao1,2, Xiaoyu Shi1,3(B), and Mingsheng Shang1,3

1 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences,

Chongqing 400714, China
xiaoyushi@cigit.ac.cn

2 Beihang University, Beijing 100191, China
3 School of Automotive Software, Chongqing School, University of Chinese Academy

of Sciences, Chongqing 400714, China

Abstract. In the cloud computing environment, task scheduling with
multiple objectives optimization becomes a highly challenging problem in
such a dynamic and bursty environment. Previous studies have mostly
emphasized assigning the incoming tasks in a specific scenario, with a
weak generalization ability to various objectives automatically. Thus,
they suffer the inefficient issue under large-scale and heterogeneous cloud
workloads. To address this issue, we propose a deep reinforcement learn-
ing (DRL)-based intelligent cloud task scheduler, which makes the opti-
mal scheduling decision only dependent on learning directly from its
experience without any prior knowledge. We formulate task scheduling
as a dynamical optimization problem with constraints and then adopt
the deep deterministic policy gradients (DDPG) network to find the opti-
mal task assignment solution while meeting the performance and cost
constraints. We propose a correlation-aware state representation method
to capture the inherent characteristics of demands, and a dual reward
model is designed to learn the optimal task allocation strategy. Extensive
experimental results on Alibaba cloud workloads show that compared
with other existing solutions, our proposed DDPG-based task scheduler
enjoy superiority and effectiveness in performance and cost optimization.

Keywords: Cloud computing · Task scheduling · Deep reinforcement
learning · Cost optimization · Performance improvement

1 Introduction

Cloud computing is the most popular computing paradigm in IT society [1].
With virtualization technologies, the data center can easily abstract the different
hardware infrastructures as a larger resource pool and provides elastic hardware
resources as services to users through the Internet. For instance, Amazon EC21,
1 https://aws.amazon.com/ec2/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 600–615, 2022.
https://doi.org/10.1007/978-3-031-20984-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_43&domain=pdf
https://aws.amazon.com/ec2/
https://doi.org/10.1007/978-3-031-20984-0_43

Performance and Cost-Aware Task Scheduling 601

Microsoft Azure2, and Alibaba Cloud3 offers customized hardware resource to
customers in the form of virtual machine (VM), and charge based on actual
usage. As a result, increasingly services have migrated to the cloud environment
for fast development and cost-saving.

Regarding of cloud environment, the effective task scheduling of cloud ser-
vices is one of the key enablers of large-scale cloud systems [2]. However, the
unique features of the cloud environment make task scheduling among VMs
more challenging. Firstly, the cloud workload featured highly dynamic varia-
tion and unexpected bursts. Thus, it requires a designed task scheduler with
the characteristic of robustness against the unexpected burst in incoming cloud
tasks. Secondly, the problem of task scheduling in cloud environment is NP-
hard problem. Furthermore, the datacenter usually offers users various types of
VM instances to meet users’ customized requirements. Each type of VM has
its own pricing model. Thus, the large-scale task scheduling problem becomes
more complicated in such a heterogeneous environment. Last but not least, task
scheduling in the cloud environment is a multi-objective optimization problem
and is related to the profits of multiple stakeholders. For the date center, it
is expected to maximize the utilization ratio of hardware resources. The cloud
services providers emphasize minimizing the usage cost of rented VM instances,
while the end users concern more about the service experience offered by cloud
services providers. Thus, how to design an efficient task scheduler to guarantee
the profits of different stakeholders is also an important problem.

Following this, several solutions have been proposed with using heuristic-
based algorithms [3–7]. Some of these methods focus on scheduling problems for
offline or static batch tasks, which are not incapable of the dynamic workloads
in real-time scenarios. For the online task scheduling method, existing solu-
tions using meta-heuristic algorithms can only assign tasks sequentially, which
is inefficient to deal with the massive and dynamic workload case. Meanwhile,
heuristic-based task scheduling methods emphasize on a specific scenario, lack-
ing the generalization ability to adapt to a wide range of objectives. Meanwhile,
they cannot utilize the inherent characteristics of workloads to improve the opti-
mization effect.

To this end, we propose an effective task scheduling based on the deep rein-
forcement learning (DRL) framework in this paper. We consider online task
scheduling as a constrained dynamical optimization problem. We formulate it
as a Markov decision process (MDP) model, then adopt the deep deterministic
policy gradient (DDPG) network to find the optimal task assignment solution.
It can learn directly from its experience without any prior knowledge, making
the appropriate scheduling decision for VMs for continuous online task requests.
The main contributions of this paper include:

– We propose an RL model of the task scheduling problem in cloud environ-
ments. We also formulate the state representation and rewards to train DRL

2 https://azure.microsoft.com/en-ca/.
3 https://www.alibabacloud.com/.

https://azure.microsoft.com/en-ca/
https://www.alibabacloud.com/

602 Z. Zhao et al.

agents to satisfy load balancing, reduce average response time and optimize
the usage cost of a cloud cluster.

– We design a correlation-aware state representation method that leverages
the Pearson’s correlation coefficient (PCC) and standard deviation of the
resources demands (STD) to help perceive the feature of the workloads. A
dual-reward model is designed to improve the effectiveness of learning the
optimal policy.

– We conduct extensive experiments on real-world workload trace. It clearly
demonstrates the superiority of our method over other state-of-the-art
approaches.

2 Related Works

Scheduling tasks in the cloud environment is an essential and challenging prob-
lem, which has been studied for decades. To improve the performance of cloud
datacenter under the constraints of the Service Level Agreements (SLAs), var-
ious task assignment algorithms and approaches are proposed [8–10]. Several
solutions view the task scheduling problem as an NP-hard problem, whose goal
is to optimize the task assignment in a stable environment. Hence, some heuris-
tic or meta-heuristic methods have been proposed to solve the task scheduling
problem, such as SARO [6] and hybridized BA [7]. For instance, Luo et al. [5]
proposed a Correlation-Aware Heuristic Search(CAHS) method to detect the
inherent correlations of the demands of different types of computing resources.
Note that, most heuristic-based solutions only focus on specific scenarios, which
limits their generalization ability in a highly dynamic environment.

Recently, several reinforcement learning (RL) methods have been applied to
cloud task scheduling [11,12]. Compared to the heuristic-based methods that
focus on maximizing the immediate (short-term) reward, RL-based method can
help cloud services learn the long-term optimal task scheduling policy on-the-
fly. For example, Wei et al. [13] proposed a QoS-aware job scheduling method
for applications in a cloud deployment. DeepRM [14] used REINFORCE, a pol-
icy gradient DeepRL algorithm for multi-resource packing in cluster scheduling.
Rjoub et al. [15] combined DRL with LSTM to address large-scale workloads.
However, the cluster of this model is assumed to be homogeneous. Therefore,
they can not adapt to various scenarios easily and be widely used in the real-
world environment.

In summary, most of the existing methods can only schedule single task at
a time. Furthermore, these works only focus on performance improvement. In
addition, most of the previous solutions only adapt to some specific scenarios,
and cannot be generalized to adapt to various scenarios. In contrast, our method
can schedule multiple tasks simultaneously. By perceiving the status of the batch
tasks as a whole, it can use Pearson’s correlation coefficient (PCC) and standard
deviation of the resource demand to evaluate the feature of the workload and
therefore come up with better strategies. What’s more, it can adapt to multiple
optimization objectives such as task response time and cost-efficiency.

Performance and Cost-Aware Task Scheduling 603

Fig. 1. Task scheduling framework in the cloud environment

3 System Architecture and Problem Statement

3.1 Overview of System Architecture

A typical cloud computing scenario is considered in this paper. It involves three
stakeholders: datacenter, cloud services providers and end users. Figure 1 is the
system architecture. On the cloud side, each VM maintains a task wait queue
for received tasks. Here, we assume that each VM executes all assigned tasks
in a non-preemptive way (i.e.,the first come first served way). On the other
hand, users are allowed to submit multiple types of tasks at the same time.
These tasks can be of different types, such as Computation-intensive tasks, I/O-
intensive tasks ,and normal tasks. These tasks can be assigned to different VMs
through the designed task scheduler. Please note that the arrival time, quantity,
and type of tasks submitted by users are all unpredictable.

The task scheduler consists of three core components: a task queue (TQ)
module, a status monitor (SM) module ,and a DRL-based scheduler module.
The function of TQ is mainly to store heterogeneous tasks submitted by dif-
ferent end-users over time. The SM is used to collect status information of all
assigned tasks and VMs, including task length, CPU utilization of each task,
VM’s MIPS (Million Instructions Per Second), RAM utilization, and waiting
time of a task. For scheduler module, it is responsible for calculating the optimal
task assignment solution, based on the collected status information from SM.
After that, according to the result of the scheduler module, the tasks in TQ are
assigned to suitable VM instances automatically for execution.

3.2 Problem Formulation

For the convenience of expression, we first define the related symbol in our
model, as shown in Table 1. Then we formalize the cloud task scheduling as a
constrained dynamic optimization problem.

604 Z. Zhao et al.

Table 1. Definition of symbols

Symbol Definition

J The total number of VMs in the cluster

I The total number of tasks in a batch

speed The data transportation speed

vmj The jth VM in the cluster 1 ≤ j ≤ J

mipsj The speed that the vmj executes the instructions

ramj The size of vmj
′s memory

pricej The price of the vmj per second

taski The ith task in the task batch 1 ≤ i ≤ I

mii The task length of taski

cpui The required cpu utilization rate of taski

datai The data size of taski

coreNumj The number of cores in the jth VM

To provide personal services and maximize resource utilization, the data cen-
ter usually offers various types of VM instances with varied resource configura-
tions. Hence, the VM instance can be described as vmj = (mipsj , ramj , pricej)
(0 ≤ j ≤ J), where j indicates the id of the VM instance.

Generally, the tasks are submitted by numerous end-users simultaneously.
On the other hand, the cloud services providers have no prior knowledge of the
incoming workloads in advance, e.g., the amount and type of submitted tasks.
Hence, in our model, a task is identified as taski = (mii, cpui, datai) (0 ≤ i ≤ I),
where i is the task id.

The task scheduler is responsible for assigning user tasks to suitable VM
instances. When a task is allocated to a specific VM instance, it firstly enters
the corresponding waiting queue in a first-come-first-sever (FCFS) manner. The
response time of task i deployed on VM j (i.e., RTij) is defined as the total
amount of time that task i stays in VM j. In detail, it can be divided into the
duration of task i will spend in the waiting queue (i.e., Qqueue

j) and the execution
time in the CPU (P exe

ij). Considering the transportation of datai consumes some
time, the RTij can be defined as:

RTij = P exe
ij + max

(
Qqueue

j ,
datai

speed

)
(1)

Based on the above assumption, the execution time P exe
ij is defined as P exe

ij =
mii

mipsj×cpui
, and the waiting time Qqueue

j is Qqueue
j =

∑C
k=1 P exe

kj , where C means
the number of tasks (arrival earlier than task i) that are waiting in the queue of
vmj . Furthermore, the average response time of total I(t) tasks at time t is:

AT (t) =
I(t)∑
i=1

RTij

mii
(2)

Performance and Cost-Aware Task Scheduling 605

Fig. 2. The structure of DRL-based Task scheduler

Given the price of rented V Mj , the cost of executing taski is evaluated as ECi =
P exe

ij × pricej . Thus, the total cost of executing I(t) tasks at time t is:

EC(t) =
I(t)∑
i=1

ECi (3)

Based on (2) and (3), the optimal target of the task scheduler can be defined
as minimizing the average response time and total cost of all tasks during the
whole running time K, it can be expressed as:

minimize β ×
K∑

t=1

AT (t) + (1 − β) ×
K∑

t=1

EC(t) (4)

4 Performance and Cost-Aware Task Scheduler

In this section, we propose a DDPG-based method for performance and cost-
aware task scheduling in the high dynamic cloud environment. The objectives
of our method are to optimize the average response time and total cost when
executing large-scale tasks in VM cluster. Considering the time-varying charac-
teristics of workload, the dynamic tasking scheduling problem is constructed as
a Markov decision process (MDP), then the DDPG algorithm is employed to
obtain the optimal task scheduling strategy. Specifically, the correlation-aware
state representation and dual rewards design are introduced.

4.1 MDP Model

In the cloud environment, the workloads are unpredictable and highly dynamic.
Thus, it is impossible for us to adapt traditional scheduling methods to such
flexible scenarios. In this scenario, we model the task scheduling in the cloud
environment as a Markov Decision Process (MDP). Formally, we define the tuple
of three elements (S,A,R) of MDP in the cloud task scheduler as follows:

606 Z. Zhao et al.

– State space S: In the scheduling algorithm, a state s ∈ S is defined by the
correlation of the batch tasks scor, the current status of submitted tasks sTask

and rented VMs sV M , i.e., s = scor
⋃

sTask
⋃

sV M .
– Action Space A: An action a =

{
vm1, vm2, . . . , vmJ

} ∈ A is to assign a
batch of tasks to rented J VMs based on the current state s.

– Reward R: The reward is used to guide the task scheduler to make the
optimal assignment solution (i.e., action) under current states, based on
the objective of the proposed task scheduler framework. In our model, the
reward of assigning a batch of I tasks to a cluster of J VMs is: rewordIJ =
rewardprior

IJ + rewardposterior
IJ .

The agent is to assign different tasks that users submit to appropriate VMs.
The agent observes the state of tasks and VMs in the cluster and takes action
according to trained police π. After that, it receives a reward immediately from
the environment. In detail, the proposed DDPG-based task scheduling frame-
work consists of two parts, i.e., online net and target net, to train and test the
task assignment policy based on the online environment and offline historical
data. For each part, it includes an Actor net and Critic net. The structure of
our proposed task scheduler is illustrated in Fig. 2.

4.2 Correlation-Aware State Representation

State representation plays an important role in the DRL algorithms because it
describes the current information of the cloud environment. In [5], it revealed
the effectiveness of considering correlations while scheduling the tasks. Therefore,
we propose a correlation-aware state representation method to help the agent
better perceive the workload. In detail, PCC is an effective matrix to evaluate
the correlation of any two task, and has been widely applied in various fields.
Hence, in this paper, we adopt PCC to measure demand correlation. Considering
the demand for three types of resources (mi, cpu, data) in batch tasks, the PCC
of the batch tasks can be calculated by:

ρ(mi, data) =
cov(mi, data)

σ(mi) × σ(data)
, (5)

ρ(mi, cpu) =
cov(mi, cpuutil)
σ(mi) × σ(cpu)

, (6)

ρ(cpu, data) =
cov(cpu, data)

σ(cpu) × σ(data)
, (7)

Here, cov(·) and σ(·) represent the covariance and standard deviation, respec-
tively. In addition, to evaluate the distributions of the resource demands between
different tasks, we also employ the standard deviation(STD) of std(mips),
std(data) ,and std(cpu), which can be calculated by:

std(mips) =

√∑I
i=1(mipsi − mips)2

I
(8)

Performance and Cost-Aware Task Scheduling 607

std(cpu) =

√∑I
i=1(cpui − cpu)2

I
(9)

std(data) =

√∑I
i=1(datai − data)2

I
(10)

We applied the PCC and STD to the state space to let the agent make better
decisions according to the feature of the batch tasks. Therefore the correlation
part of the state s is:

scor = [ρ(mi, data), ρ(mi, cpu), ρ(cpu, data), std(mi), std(data), std(cpu)] (11)

The second part of the vector is the batch’s specification. Suppose there are
in total I tasks in a batch, the batch can be described as:

stask = [task1
mi, task1

cpu, task1
data, ..., taskI

mi, taskI
cpu, taskI

data] (12)

The third part of the vector represents the state of the VMs. Suppose there
are in total J VMs in the cluster. Note that each vmj may have a Task Queue
waiting to be executed, therefore it has a feature that represents the time that
a new task will wait in line Qqueue

j , so the cluster can be described as:

sV M = [vm1
mips, vm1

price, vm1
Q, ..., vmJ

mips, vmJ
price, vmJ

Q] (13)

These three parts make up the state space vector. After each action, the cluster
state will be updated and the next batch will come and make up the new space
state.

4.3 Dual Rewards

To better guide the agent in learning an optimal task allocation scheme, we
define a dual reward model for the proposed DDPG method, which includes a
prior and a posterior rewards. Specifically, the prior reward means the agent can
know the reward of a specific action before the VMs execute the tasks. We use
rewardprior

IJ to represent the total prior reward of a batch task:

rewordprior
ij =

{
rewardpri/I, if Qqueue

j is not empty
0, if Qqueue

j is empty
(14)

rewardprior
IJ =

I∑
i=1

rewordprior
ij (15)

Here, rewardpri is a constant that is used to control the maximum of prior
reward. The posterior reward means the agent can only know the reward after
the VMs execute the tasks. Our posterior reward has two elements, one is the
total cost of the tasks ECIJ , the other is the average response time AT . For

608 Z. Zhao et al.

a specific task in the batch, the execution of it will have a certain cost and a
certain response time ratio, which are ECij and ATij respectively.

To make the training process stable, we normalized the EC and AT in a
batch. We define the maximum and minimum AT in a batch as ATmax and
ATmin, and the maximum EC in a batch as ECmax. Therefore, the normalized
AT and cost are:

AT ∗
ij =

ATij − ATmin

ATmax − ATmin
(16)

EC∗
ij =

ECij

ECmax
(17)

Hence, the posterior reward of this batch is:

rewardposterior
IJ = β ×

I∑
i=1

AT ∗
ij + (1 − β)

I∑
i=1

EC∗
ij (18)

Note that β ∈ [0, 1]. β can be used to adjust the agent’s optimization objectives.
For example, if β = 1, then an agent is trained to reduce the average response
time.

The two rewards are applied simultaneously to train the agent. We can adjust
the value of rewardpri to control the size relationship between two rewards. The
goal of the DDPG agent is to minimize the rewards.

4.4 Algorithm Training

In the following, we introduce our proposed DDPG-based task scheduling algo-
rithm (see Algorithm 1). Offline training can not only make the critic network
evaluate the actions more accurately, but also let the action network generate
higher scored actions. To achieve this, we applied experience replayed strategy
and target network [16].

Experience replay’s main purpose is to solve the problem of correlation and
non-stationary distribution of empirical data. We introduced a fixed-size memory
replay buffer R. At each time step, we will store the latest (at, st, rt, st+1) sets to
the replay buffer R, and randomly sample a mini-batch from the buffer to train
the agent. Because the DDPG algorithm is an off-policy algorithm, the replay
buffer can be relatively large which allows the algorithm to learn across a set
of uncorrelated transitions. Therefore, the parameters of the actor network are
updated by:

∇θµμ ≈ Eμ′ [∇θµQ(s, a|θQ)|s=st,a=μ(st|θµ)]

= Eμ′ [∇aQ(s, a|θQ)|s=st,a=μ(st)∇θµμ(s|θμ)|s=st
] (19)

Directly implementing Q-learning with a neural network is proved unstable
in many situations. Introducing a target network can significantly reduce the
oscillations of the neural network’s parameters caused training process. The tar-
get network is a copy of the online network (actor and critic network), but it is

Performance and Cost-Aware Task Scheduling 609

Algorithm 1. DDPG-based task scheduling Algorithm
1: Randomly initialize online critic network Q(s, a|θQ) and online actor network

μ(s|θμ) with parameters θQ and θμ

2: Initialize target network Q’ and μ′ with parameters θQ′ ← θQ, θμ′ ← θμ

3: Initialize memory replay buffer R

4: Initialize exploration probability ε and exploration warm up steps n
5: for each batch of I tasks arrive at time t = 1, ..., T do
6: if t > n then
7: Sample a mini-batch of N transitions (si, ai, si+1) from R , which all the

selected tasks have been completed
8: Calculate rewardi

IJ according to responseTime and exT
9: Calculate ri according to rewardi

IJ

10: Set yi = ri + λQ′(si+1, μ
′(si+1|θμ′

)|θQ′
)

11: Update the critic by minimizing the loss:
L = 1

N

∑
i(yi − Q(si, ai|θQ))2

12: Update the actor policy using the sampled gradient:
∇θµμ|si ≈ 1

N

∑
i ∇aQ(s, a|θQ)|s=si,a=μ(si)∇θµμ(s|θμ)|s=si

13: Update the target networks:
θQ′ ← τθQ + (1 − τ)θQ′

θμ′ ← τθμ + (1 − τ)θμ′

14: With probability 1 − ε generate an action at = μ(st|θμ) and ε generate a
random action at

15: else
16: Generate a random action at

17: end if
18: Complete task scheduling according to action at and observe reward
19: Store transition (st, at) in R

20: Store completed task’s RT and P exe in R

21: end for

updated slower instead of copying the weights directly, which ensures the neural
network higher stability. At each time step, the parameters of the target network
are updated by:

θ′ = τθ + (1 − τ)θ′ (20)

5 Performance Evaluation

5.1 Experimental Settings

Cluster Resources. We consider that there are 20 VMs deployed in the public
cloud and provide services to the end-users. Meanwhile, we set four types of
VM instances with various pricing models in the cluster. The details of cluster
resources and price are shown in Table 2. Note that, the pricing model of the
VM instances is identified with the Enterprise level Computation type(c7) (in
China) provided by Alibaba Cloud. Following [17,18]. We also adopt Cloudsim
Plus to build the cloud environment.

610 Z. Zhao et al.

Table 2. Cluster resource details

Instance Type CPU cores Memory(GB) Quantity Price

m1 16 32 5 $0.3624/h
m2 12 24 5 $0.2739/h
m3 4 8 5 $0.0972/h
m4 2 4 5 $0.0530/h

Workloads. Alibaba-Cluster-trace-v2018 is used to test the performance of the
task scheduler, which contains 4000 VMs under workload of 8 d. To simplify the
problem, we use the data of the second day. To make the model stable, there are
up to 50 tasks can be submitted by the end-users in one second, which will not
miss the feature of the workload according to our observation.

Parameter Settings. In our DDPG-based task scheduling algorithm, we
employ four deep neural networks, which are Actor_online, Critic_online,
Actor_target, Critic_target. Each one has four fully connected layers. Both
two online networks are updated with each round of training, whereas the two
target networks are updated by (20) with τ = 0.01. We set the capacity of mem-
ory replay buffer R = 10000, the size of mini-batch N = 16. We apply Adam
optimizer to optimize the network and the learning rate for Actor_online and
Critic_online networks are 0.0006 and 0.001 respectively. To store some memory
before the training, the network begins to train after 400 steps. All experiments
are conducted on a tower server, which includes 2.1GHz Intel Xeon E5 CPU,
250GB RAM, Ubuntu 18.04LTS operation system, JDK1.8, Python3.6, PyTorch
1.0 and CloudSim Plus 4.0.

Baseline Schedulers. We compare our DDPG-based task scheduler with four
baseline approaches. There are 1)Random, randomly selects a VM for each job;
2) Round-Robin(rr), assigns tasks to each VM in turn; 3) Earliest, assigns a task
to the first idle VM according to the arrival time; 4) DQN, the newest DRL-based
task scheduling method, and the design of the DQN method is similar to [11].

Note that, our proposed DDPG-based scheduler and all the baselines make
dynamic decisions from the current state of the cluster and workload, and do
not have prior knowledge of the whole workload. We performed 10 repeated
experiments on each algorithm and recorded the average results.

Evaluation Metrics. In this paper, we apply three indicators to evaluate the
performance of different methods in terms of satisfying different stakeholders
profiles, which are response time ratio, total cost and the standard deviation

of CPU utilization. Among them, response time ratio ResTR =
∑M

m=1
mim
RTmj

M
describes the average response time of executing M tasks in total. Total costs
represents the monetary cost of the cloud services provider during the whole
execution time K. According to (3), the total costs can be defined as Cost =∑K

t=1 EC(t).

Performance and Cost-Aware Task Scheduling 611

CPU utilization standard deviation among the cluster, which means the stan-
dard deviation of average CPU utilization of each VM instance in the cluster.
The CPU utilization standard deviation can represent the level of load balance
among the cluster. For the data center, a lower one means better resource uti-
lization:

Δcpu =

√∑J
j=1(AvgCpuj − AvgCpuj)

J
(21)

Here, AvgCpuj represents the average cpu utilization of V Mj in the time period
of K time steps.

Fig. 3. The changes of Alibaba-Cluster-trace-v2018 workload on the second day.

Fig. 4. Performance comparison on real-world workload.

5.2 Performance on Real-World Workload

First, we evaluate the performance of DDPG in the face of real-workload with the
characteristic of high dynamical. Figure 3 shows the average total task number
and average total task length of Alibaba-Cluster-trace-v2018 every 10min.

Figure 4 shows the experiment result of the comparison of these methods. We
can summarize the following three conclusions: 1). Our proposed DDPG-based
method has the best performance on all of those three metrics, this is because
the reinforcement learning methods and our design of PCC and STD in the state
space allows it to detect the feature of the workload efficiently. The dual rewards
allow it to learn to adapt to proper strategy to realize global optimization. 2).

612 Z. Zhao et al.

The RL methods (DDPG, DQN) have better performance than traditional meth-
ods, because they can learn from their interaction with the environment, whereas
traditional methods are incapable of changing their strategies according to the
environment. 3). Our proposed DDPG-based method has a better performance
than the DQN method, especially on the metric of cost the average CPU uti-
lization standard deviation. This is because the DDPG method can schedule the
whole batch of tasks simultaneously, and DQN can only do a one-by-one sched-
ule. This ability of DDPG is strengthened by the design of PCC and STD in the
state space.

Ablation Study. To prove the effectiveness of each component in our refine-
ment of the DDPG method, we gradually eliminate the corresponding model
components by defining the following versions: 1). DDPG-ver1: it does not have
PCC and STD in its state space, and it only has one posterior reward for the
agent, which is a typical model for most DRL methods. 2). DDPG-ver2: In this
model, we added PCC and STD in its state space. 3). DDPG-ver3: It has dual
rewards as its reward function. The results are shown in Fig. 5. As expected, our
proposed method outperforms all the other versions of the DDPG method. In
detail, our refined versions DDPG-ver2 and DDPG-ver3 already achieved quite
good performances compared with the original DDPG method. This is because
the PCC and STD in the state space allow the DDPG-ver2 agent to better detect

Fig. 5. Comparison of DDPG methods in different versions

Fig. 6. Influence of changing rewardpri and β. The size of the points represents the
sum of the two value.

Performance and Cost-Aware Task Scheduling 613

the intrinsic correlation of the workload efficiently, and the dual rewards allow
the DDPG-ver3 agent to adapt to a more balanced global optimization strat-
egy. Lastly, our proposed method combines the advantages of DDPG-ver2 and
DDPG-ver3 can reach the best performance among these versions.

As the optimization priority β and the rewardpri of prior reward are pivotal
for the agent to learn a proper strategy, we investigated the impact of changing
the value of them. To better evaluate these two objectives, we normalized both of
them. Among all of these algorithms, we can define the ResTRmax, ResTRmin

and costmax, costmin. Therefore, each one’s ResTR∗ = ResTR−ResTRmin

ResTRmax−ResTRmin
,

and cost∗ = 1 − cost−costmin

costmax−costmin
. It is clear that a greater ResTR∗ and cost∗

means a better performance.

Effect of changing rewardpri. We use p in the figure to denote rewardpri. We
changed rewardpri in a range of [0, 10]. Figure 6a shows the experiment results.
We have the following observations: 1). p = 0 does not have the best overall
performance because it completely ignores the prior reward. 2). As the growing
of p, the performance of the model declines. This is because the excessive large
value of p will let the agent adapt to the strategy more like the earliest method
which can not reach a global optimization strategy. 3). p = 1(rewardpri = 1)
has the best performance on both ResTR and cost, which indicates that this is
the most proper value of the prior reward.

Effect of changing β. To evaluate which value of β can help the algorithm reach
the best overall performance, we changed β in a range of [0, 1]. Figure 6(b) shows
the experiment results. We have the following observations: 1). β = 0 and β = 1
do not have good performances on either metric, because these two are strongly
correlated, and ignoring any of them will prevent the algorithm from finding the
most proper strategy. 2). When β = 0.5, the overall performance is the best
because it is in the upper right corner. This is because it can better balance
the two optimization objectives and learn to adapt to the most appropriate
strategies. 3). β = 0.3 has the best performance on ResTR and β = 0.9 has
the best performance on cost. According to different scenarios, these are also
applicable choices of β.

6 Conclusion

Efficient task scheduling in the cloud environment is always an important and
challenging problem because of its high dynamic and unpredictable workload and
complex inherent VM characteristics. Traditional methods and heuristic-based
approaches only focus on some specific scenarios with particular objectives. In
this paper, we introduce an RL model for the problem of multiple-objective
optimization-based task scheduling in the cloud datacenter. In addition, we apply
this model to our DDPG-based algorithm. We have designed correlation-aware
state representation and advanced reward signals, which help the DDPG agent
to learn the task schedule performance and the total cost of VM cluster. The
agents can learn to optimize multiple objectives under high dynamic workloads
without previous knowledge of the VM cluster and the workload, but only from

614 Z. Zhao et al.

its interaction with the environment and the rewards. Extensive experimental
results have shown that our proposed method overperforms the baseline methods
on response time and total cost when facing high dynamical workloads.

Acknowledgements. This work is partly supported by the key cooperation project
of chongqing municipal education commission (HZ2021017,HZ2021018), in part by the
“Fertilizer Robot" project of Chongqing Committee on Agriculture and Rural Affairs,
in part by the Chongqing Research Program of Technology Innovation and Applica-
tion under grants cstc2019jscx-zdztzxX0019, in part by West Light Foundation of The
Chinese Academy of Sciences.

References

1. Arunarani, A., Manjula, D., Sugumaran, V.: Task scheduling techniques in cloud
computing: a literature survey. Future Gener. Comput. Syst. 91, 407–415 (2019)

2. Zhu, Q.-H., Tang, H., Huang, J.-J., Hou, Y.: Task scheduling for multi-cloud com-
puting subject to security and reliability constraints. IEEE/CAA J. Automat.
Sinica 8(4), 848–865 (2021)

3. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in
cloud computing based on meta-heuristics: review, taxonomy, open challenges, and
future trends. Swarm Evol. Comput. 62, 100841 (2021)

4. Tawfeek, M.A., El-Sisi, A.B., Keshk, A.E., Torkey, F.A.: Cloud task scheduling
based on ant colony optimization. In: 2013 8th International Conference on Com-
puter Engineering & Systems (ICCES), pp. 64–69 (2013)

5. Luo, C., et al.: Correlation-aware heuristic search for intelligent virtual machine
provisioning in cloud systems. In: Proceedings of the AAAI Conference on Artificial
Intelligence 35, 12363–12372 (2021)

6. Shu, W., Cai, K., Xiong, N.N.: Research on strong agile response task scheduling
optimization enhancement with optimal resource usage in green cloud computing.
Future Gener. Comput. Syst. 124, 12–20 (2021)

7. Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger, I., Tuba, E., Tuba, M.: Multi-
objective task scheduling in cloud computing environment by hybridized bat algo-
rithm. J. Intell. Fuzzy Syst. 42(1), 411–423 (2022)

8. Gill, S.S., Chana, I.: A survey on resource scheduling in cloud computing: issues
and challenges. J. Grid Comput. 14, 06 (2016)

9. Mathew, T., Sekaran, K.C., Jose, J.: Study and analysis of various task scheduling
algorithms in the cloud computing environment. In: 2014 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), pp. 658–
664 (2014)

10. Liu, X., Tong, W., Zhi, X., ZhiRen, F., WenZhao, L.: Performance analysis of
cloud computing services considering resources sharing among virtual machines. J.
Supercomput. 69(1), 357–374 (2014)

11. Islam, M.T., Karunasekera, S., Buyya, R.: Performance and cost-efficient spark job
scheduling based on deep reinforcement learning in cloud computing environments.
IEEE Trans. Parallel Distrib. Syst. 33(7), 1695–1710 (2021)

12. Ran, L., Shi, X., Shang, M.: SLAs-Aware online task scheduling based on deep rein-
forcement learning method in cloud environment. In: 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), pp. 1518–1525, IEEE (2019)

Performance and Cost-Aware Task Scheduling 615

13. Wei, Y., Pan, L., Liu, S., Wu, L., Meng, X.: DRL-scheduling: an intelligent QoS-
aware job scheduling framework for applications in clouds. IEEE Access 6, 55112–
55125 (2018)

14. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics
in networks, pp. 50–56 (2016)

15. Rjoub, G., Bentahar, J., Abdel Wahab, O., Saleh Bataineh, A.: Deep and rein-
forcement learning for automated task scheduling in large-scale cloud computing
systems. Concurrency and Computation: Practice and Experience, vol. 33, no. 23,
p. e5919 (2021)

16. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2–4, 2016, Conference Track Proceedings (Y. Bengio and Y.
LeCun, eds.) (2016)

17. Abreu, D.P., et al.: A rank scheduling mechanism for fog environments. In: 2018
IEEE 6th International Conference on Future Internet of Things and Cloud
(FiCloud), pp. 363–369, IEEE (2018)

18. Silva Filho, M.C., Oliveira, R.L., Monteiro, C.C., Inácio, P.R., Freire, M.M.:
CloudSim Plus: a cloud computing simulation framework pursuing software engi-
neering principles for improved modularity, extensibility and correctness. In: 2017
IFIP/IEEE symposium on integrated network and service management (IM), pp.
400–406, IEEE (2017)

	Performance and Cost-Aware Task Scheduling via Deep Reinforcement Learning in Cloud Environment
	1 Introduction
	2 Related Works
	3 System Architecture and Problem Statement
	3.1 Overview of System Architecture
	3.2 Problem Formulation

	4 Performance and Cost-Aware Task Scheduler
	4.1 MDP Model
	4.2 Correlation-Aware State Representation
	4.3 Dual Rewards
	4.4 Algorithm Training

	5 Performance Evaluation
	5.1 Experimental Settings
	5.2 Performance on Real-World Workload

	6 Conclusion
	References

